Impact Story: BP Spill — Using Science to Hold BP and Federal Regulators Accountable

bp_story_slider

Within a day of the April 20, 2010 explosion on BP’s Deepwater Horizon drill rig in the Gulf of Mexico, we began our high tech surveillance of the spill. Examining satellite images and aerial survey data, SkyTruth quickly became a leading source of independent, unbiased information on the size and scope of the disaster.

It was the largest oil spill in the nation’s history, releasing almost five million barrels of oil into the Gulf of Mexico. As bad as it was, it could have been even worse. Had BP continued to downplay the extent of the disaster, delaying mobilization of the appropriate response, it may have taken even longer than the 87 days it took to cap the well. Our work challenged the official story, spurred government science agencies to get off the sidelines,  and opened a public dialogue about the magnitude of the risk posed by modern offshore drilling..

Throughout the spring and into mid-summer of 2010, as BP’s disabled well continued to pump oil into the Gulf, SkyTruth president John Amos was quoted in hundreds of news reports, and his interpretation and analysis of the raw imagery helped policy makers, the press and the general public make sense of events as they unfolded.

SkyTruth also played a vital watchdog role. One week after the accident, we raised concerns that the amount of oil spilling into the Gulf was likely much higher than the 1,000 barrels-a-day estimated by BP and repeated by government officials. The New York Times and other media outlets picked up the analysis published on the SkyTruth blog on April 27. The next day, government officials publicly broke ranks with BP and raised its estimate to 5,000 barrels a day, the amount we had initially calculated.

John and other independent experts kept the issue in the headlines by presenting new estimates of 20,000 and then 26,500 barrels per day as new images and data became available, leading the public to question whether BP was low-balling the spill rate. On May 4th, the company privately acknowledged the possibility that the well was likely gushing as much as 60,000 barrels of oil a day, 10 times more than the government had previously estimated.  (Later, the government’s scientific teams concluded that the higher estimate was closer to the truth; they estimated that 53,000 barrels were leaking each day immediately before the well was capped on July 15.)

image gallery

While NASA and the governments of several foreign countries made their satellite images freely available, without organizations like SkyTruth to interpret those images, the public may have never known the true impact of the spill.

Equally important, we invited people directly into the conversation. Tens of thousands visited our website, blog, Twitter and Facebook pages. During the first ten days of June, for instance, our Blog received more than 70,000 visits – 25,000 in a single day. Meanwhile, our Oil Spill Tracker site, deployed on the fly in the first days of the spill, allowed Gulf residents to act as citizen journalists posting commentary and observations, as well as photos and videos of oil awash on the beaches and petroleum-drenched wildlife.

Oceanographer Ian R. MacDonald, who collaborated with the organization during the three-month Gulf spill and an earlier one in Australia’s Timor Sea in 2009, likens SkyTruth’s mission to that of “a fire truck.”

“When there’s an emergency, SkyTruth is there,” says MacDonald, a professor at Florida State University and one of the world’s foremost experts in remote sensing of oil slicks. “From the beginning of the BP spill to the end, SkyTruth was a public source of very timely raw satellite images and interpreted products, as well as a thoughtful commentary that pulled in the views of other people.”

Impact Story: SkyTruth Measures Advance of Mountaintop Destruction in Appalachia

OHVEC_Kayford-Mtn-MTR-4jan06.jpg

In recent decades, advances in technology–aided by low fuel costs and driven by the nation’s voracious demand for energy – have allowed mining companies to extract coal more profitably than through traditional underground mining methods. In Appalachia, these developments led to a rise of a new kind of coal mining, aptly named by its critics as “mountaintop removal,” because forest cover is first cut away and explosives are used to blast ridge tops and expose the coal seams beneath.

This form of strip mining also produces tons of “waste rock” (the parts of the mountain of no use to coal companies) that miners dump into neighboring valleys. The process is called “valley fill” and has buried more than a thousand miles of streams, according to the U.S. Environmental Protection Agency – posing immediate health and safety risks to local residents, threatening downstream drinking water supplies, and degrading or destroying some of the most ecologically significant forest and aquatic habitats on the planet.

Although the physical impact of mountaintop removal (MTR) on the landscape is more extensive than logging or development, there had been no accounting of the amount of land and locations affected until Appalachian Voices asked us to investigate. The results were shocking.

As miners began blasting away at mountains throughout Appalachian coal country, activists fought back passionately by forming new grassroots groups, taking to the streets, lobbying lawmakers, and speaking out in the press. But nobody – not even the government agencies charged with overseeing the industry – had a reliable map of where mining was underway and how many mountains had already been leveled. In fact, West Virginia officials acknowledged a significant mismatch between the mining permits they had issued, and actual mining activity in the state. Landsat satellite images and aerial survey photographs were publicly available but interpreting the data required expertise that the activists did not have. So, the nonprofit group Appalachian Voices called on SkyTruth for help.

Our experts used the satellite data to map the historical occurrence of mountaintop removal mining over a 30-year period. We selected 24 of the best cloudless, summertime shots for the years 1976, 1985, 1995 and 2005. The next step was to come up with a classification system that identified active mining, and differentiated between mountaintop removal mines and other types of surface mining in the region.

The U.S. Office of Surface Mining’s official definition of “mountaintop” mining was too vague for a GIS model. So, using their guidelines,  we incorporated the concept that the mines had to cross ridge tops and impact a significant area of ridge top. We then checked our work for accuracy against detailed aerial photographs.

The resulting map showed the spread of mountaintop removal mining across a 59-county area in Kentucky, West Virginia, Tennessee, and Virginia. The amount of landscape directly impacted by mountaintop removal increased by 3.5 times from a total of 77,000 acres in 1985 to more than 272,000 acres in 2005. The size of individual mines also increased, some to more than 15 square miles (an area as big as the city of Alexandria, Virginia). In all, the satellites show more than 2,700 ridge tops were impacted. Read more about how the analysis was conducted.

Mountaintop Removal Mines

Total MTR Mined Area since 1976  445,792 Acres
Largest Single Mined Area  10,410 Acres
Median Mined Area  128 Acres
Average Mined Area  406 Acres
Number of Ridges Mined  2,789
Total Acres of Impacted Ridges  130,655 Acres
Largest Ridge Removed  504 Acres

Matt Wasson, director of programs at Appalachian Voices, says the map has been an invaluable resource for those fighting mountaintop removal.

“It just filled in a huge gap, a question that came up again and again: How much land had been used up by mountaintop removal mining?” Wasson says. “SkyTruth offered a very credible and fully independent way to answer that question.”

Wasson says his group used the SkyTruth research to build the initial version of its “What’s My Connection? online map that lets people to type in their zip codes to see how their electricity supply is directly connected to mountaintop removal mining, and the communities affected by that practice.

More recently, Appalachian Voices and the Natural Resources Defense Council employed our map in its “Reclamation Fail” project that refutes mining industry assertions that valley fills provide much needed level, buildable land to stimulate local economies and create jobs. When the two nonprofit groups put the industry claim to the test, they found the vast majority – 89 percent – of the valley-fill sites had seen no economic development activity.

“That’s why we partnered with SkyTruth,” Wasson says. “They do credible work. They are a step removed from peer advocacy and are able to issue an objective report.”

We also used the historical data and variables such as coal thickness and overburden (the rock and soil that has to be blasted and removed before reaching the coal seam) to create a risk map that helps predict where coal companies might go next. We put the map to work in a preliminary investigation of what was driving mining expansion in Wise County, Virginia.

Independent academics are also using our MTR dataset to produce groundbreaking studies that are fundamentally changing the debate about the societal costs and benefits of MTR. In a 2011 study, Dr. Melissa Ahern (health economist at Washington State University), Dr. Michael Hendryx, (epidemiologist at West Virginia University) and their colleagues found “significantly higher” rates of birth defects in communities near MTR operations.

And Dr. Emily Bernhardt, a biologist at Duke University in Durham, North Carolina, led a 2010 study  that provides the first conclusive evidence of mountaintop removal mining’s direct link to downstream water pollution and related environmental destruction.

Bernhardt and her colleagues used the historical data we had mapped along with studies of water quality and invertebrate biodiversity collected by the West Virginia Department of Environmental Protection.  They found that mining operations – even relatively small ones – can seriously debilitate ecosystems. The study, which was featured in the August 9, 2010 issue of Nature magazine and later published in the peer-reviewed journal Environmental Science and Technology, raises serious doubts about the industry’s contention that there is no need for tighter water-quality standards to keep mountaintop removal from contaminating drinking water relied on by communities downstream of the mines.

When asked by Nature about the significance of the new study, EPA officials issued a statement calling the findings “generally consistent” with its own research. This work underpins EPA’s controversial decision to revoke a mining permit that had already been issued by the Army Corps of Engineers. It was only the second time in EPA’s history that they have exercised this authority under the Clean Water Act, and though it was challenged all the way up to the Supreme Court, the EPA’s authority to overrule the Army Corps of Engineers was reaffirmed in federal court in 2014.

 

Bird’s Eye View of the Samarco Mine Disaster

On November 5, 2015, a mine-waste dam collapsed at an enormous iron mine in southeastern Brazil. The wave of toxic waste was at least twice the volume of the Johnstown Flood, and wiped out buildings and bridges over 40 miles downstream. Using post-spill satellite imagery and Google Earth, we have produced a bird’s-eye view of the devastation wrought by the deluge of arsenic-laced sludge. 

During the spill, we reported extensively on the immediate aftermath visible on satellite imagery, the remaining threat of a possible second dam failure (which thankfully did not materialize), and by looking back in time with historical satellite imagery, documented the increase of waste in the impoundment behind the failed Fundão Dam. We also wrote about how frequently these kinds of disasters occur around the world. 

The video above was created using Google Earth, comparing pre-spill imagery with images collected on November 9 and November 11. Our analyst Christian delineated the extent of the mine waste from a lake 70 miles downstream of the mine, all the way up to the town of Bento Rodrigues, the damaged Santarem Dam, and the failed Fundão impoundment (skipping a section of the river with cloudy imagery). Even further downstream, over 400 miles away, the Rio Doce ran orange for months afterwards. 

The confluence of the Rio Doce and the Atlantic on Feb. 10, 2016, over three months after the disaster, as seen by MODIS/Terra.

The confluence of the Rio Doce and the Atlantic on Feb. 10, 2016, over three months after the disaster, as seen by MODIS/Terra.

Now the Brazilian government is seeking $44 billion (USD) in damages, likening the disaster to the ecological devastation of the oil spilled in the 2010 BP/Deepwater Horizon disaster. A police investigation recently concluded that Samarco Mineração, a joint venture of Vale SA and BHP Billiton, was “more than negligent” in overlooking structural failings and continuing to push for more production. 

What is even more alarming is that studies have shown a correlation between the frequency of tailings dam incidents and downturns in commodity prices, and the height of dams is soaring around the world as mines produce more and more waste. 

How SkyTruth Works: David Kroodsma

SkyTruth isn’t your ordinary organization. Of course, everyone says that, so we thought we’d give you a glimpse into what makes us unique. With a little inspiration from Lifehacker’s “How We Work,” we’ve asked our staff to answer a few insider questions that reflect who we are and what makes us tick. . .

Name: David Kroodsma
Job title: Research Program Manager, Global Fishing Watch
Location (at the moment): Oakland, CA

David came to SkyTruth after cycling 30,000 miles through 28 countries to talk about climate change. He says the hardest part of his journey came after the peddling when he decided to sit down and write a book about it. Today he applies his education in environmental science and physics to keeping the wheels in motion at Global Fishing Watch.

  1. Describe yourself in one to three words.
    Energetic, optimistic
  2. What are you working on this week?
    I am working with our research partners to help move a number of research projects forward. I’m working on the crowdsourcing app that we use to verify different types of fishing boats and identify different types of fishing. I’m also learning how to use Google’s Earth Engine platform which allows us to do global-scale calculations on extremely high resolution data.
  3. Do you have a set routine for your workday?
    I get up at 6:20 am and join the 6:30 am office call. It’s a daily check-in meeting for the development team at SkyTruth to share their priorities and goals for the day. It’s at 9:30 am Eastern Time, but since I’m based on the West Coast, it means I start the day at 6:30 am. I like to join that because it helps me focus for the day and it’s great to stay connected to what is a pretty dispersed team. After the meeting I like to spend some time responding to emails and getting organized for the day. Then I drop my son off at the nanny. After that it varies day to day, but usually I end up having a lot of calls, especially to help coordinate our research team. It’s nice that by the end of my day, a lot of people on the East Coast have stopped working. If I’ve gotten most of my stuff done, I can finish early in the day because I start at 6:30. But usually, that’s a good time to work on projects that don’t require a lot of interactions with other team members. Things like coding or more open ended analytic projects.
  4. Coffee or tea?
    Coffee, anything will do, really, although there’s a Philz coffee very close by.
  5. What does your workspace look like right now?
    DavidK's work space
  6. What do you consider the most creative part of your job?
    The most creative part is figuring out how to best host a research workshop: what’s the best way to organize a day such that our research partners will get the most out of it and feel the most engaged and want to contribute to the program? There’s kind of an art to setting up a meeting. In some ways that’s the most creative.
  7. What are you most excited about doing at SkyTruth?
    I am most excited about making discoveries that matter. So really what we are doing is getting access to datasets no one has had the chance to analyze before, and we’re trying to say meaningful things with them. It’s about helping interpret this amazing resource of environmental observations and making it useful for people. That’s what really excites me about this work.
  8. What’s been the biggest challenge in your professional life?
    Finding that balance between research and advocacy. I’ve kind of done both in a sense, so it’s just trying to figure where I fit on that spectrum. Because I’ve done some activist-related things, but at heart, I really love science and research. I think that’s why I was originally drawn to this organization. For me it’s the right balance of seeking both truth and change.
  9. What apps are you using to accomplish the work?
    Slack, Chrome and iPython Notebooks.
  10. In your personal life are there any apps or devices you could not live without?
    Strava. It’s an app for tracking your exercise, and mapping your runs or rides.
    Strava screenshot
  11. Of the places in which you’ve lived, or places you’ve visited what would be most interesting viewed from a satellite, and why?
    I swam in the Aral Sea in 2014, and it would be very interesting to watch how that is changing. It used to be the world’s fourth largest lake, but in the last 30 years it has declined in size by over 90 percent due to the overuse of water in Central Asia. It’s now one tenth the size it used to be.

    Satellite imagery of the Aral Sea in 1998 and 2008

    Aral Sea in 1998 and 2008

    We had to drive across the empty lake bed for many, many miles to get to the edge of the water, and it continues to recede every year. As water has drained from the lake the salinity has risen to several times that of seawater, which makes it easy to float.

    Photo of David floating in the Aral Sea

    David challenging the theory of specific gravity in water several times saltier than the ocean.

  12. What superpower do you bring to the project, even though you don’t like to brag?
    Power napping. I can grab ten minutes or twenty minutes of sleep anywhere.
  13.  If you weren’t at SkyTruth, how would you be changing the world?
    Through making sure my five month old son gets his sleep. That would be world-changing for me.
  14.  What’s inspiring you this today or this week?
    Animated gifs.
    Animated gif of dog hanging head out of car window

Leaving a MARC: Cutting a Swath though Pennsylvania

3974-277_jhFair.jpg-p.-38-1024x682
Construction work on the MARC 1 pipeline right-of-way in the Endless Mountains of Pennsylvania. Photo by J. Henry Fair, flight by LightHawk.
Fracking is not the only part of oil and gas drilling that has an impact on the landscape and the environment. Case in point: the newly-built MARC 1 pipeline runs for 39 miles through Bradford, Sullivan, and Lycoming counties in northeast Pennsylvania, carrying natural gas produced by horizontal drilling and hydraulic fracturing (fracking) in the Marcellus Shale. Along the route this pipeline crosses 71 roads, 19 named streams and rivers, many small unnamed creeks, and cuts through a densely forested swath of the beautiful Endless Mountains.
IMG_24
The MARC 1 pipeline right-of-way crossing a stream in northeast Pennsylvania. 
Photo by J. Henry Fair, flight by LightHawk.

Construction of the pipeline began in the fall of 2012, and we were interested in illustrating construction-related impacts. Finding info on pipeline routes, however, is no simple task. The first map which turned up was a scanned pdf created by Central New York Oil and Gas Company (CNYOG); a deeper dig for a more accurate map turned up the Department of Transportation’s National Pipeline Mapping System (NPMS), but unfortunately NPMS data is not available for download. So we decided to create our own map of the pipeline – informed by the CNYOG map, and validated against the NPMS data:

Marc-1_Narrow

The pipeline map was created by tracing the route on aerial and satellite imagery available in Google Earth. Imagery was collected during the pipeline’s construction which helped us do a pre- and post-construction comparison. Road and stream data from the US Census Bureau’s Tiger/Line was used to calculate the number of roads and streams which were intersected by the pipeline. Here is a side-by-side look at a selected site along the pipeline route before and during construction:

MARC 1 pipeline crossing field and forest near Sugar Run, PA. Compare imagery from 2011 and 2012.
Directions to this location.

MARC 1 also traverses Pennsylvania State Game Land for 1.5 miles, with the right-of-way occupying 21 acres of this prime habitat and hunting / recreation area:

 

We used the USGS’s 2011 National Land Cover Dataset to assess the area and types of land use impacted by the construction of the pipeline. Overall, construction of the Marc-1 pipeline right-of-way impacted over 400 acres of land, 318 of which were forested (see the exact breakdown of land cover types at right and raw data here).

Now the MARC 1 pipeline is a done deal and some of the impacts will eventually fade into the background, but the corridor through forest and woody wetlands will remain. From air emissions and habitat fragmentation to property rights issues, we need to be careful not to overlook the environmental impact of pipeline building, especially as developers focus their efforts on expanding pipeline capacity to keep up with oversupply of natural gas.

If you want proof of that, look no further than the MARC 2 pipeline. Yes, developers were already proposing a 30-mile MARC 2 pipeline less than two years after the MARC 1 pipeline was completed. Stay alert…

 

MARC 1 crossing field and forest near the Susquehanna River close to Sugar Run, PA. 
Compare imagery from 2011 and 2012. Directions to this location.

 

MARC 1 traversing rural Bradford County, PA near Foster Branch, a tributary of the Susquehanna River. 
Compare imagery from 2011 and 2012. Directions to this location.